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Dynamic stabilization of straight and toroidal current-carrying plasma jets by a high-frequency quadrupole
magnetic field was proposed by Osovets [1]. A more rigorous theoretical analysis of the problem was
performed by Levin and Rabinovich [2], who obtained a Routh function for studying the dynamics of the
filament in various magnetic fields for a thin filament experiencing longwave serpentine- and construction-
type disturbances. In this paper, the method proposed in [2] is applied to the stabilization of a plasma
filament in which (as distinct from [1,2]) flows an alternating current while the quadrupole field is either
constant, or varies at a high frequency, as in [1,2].

1. The motion of thin, ideally conducting annulus along whose surface flow a transverse current I; and a
longitudinal current I, can be described [2] by a Routh function,
O (O — @)

—_T 1.1
51 o (Z=T—1). (1.1

where £ is the mechanical Lagrangian of the annulus, T and U are the kinetic and intrinsic energies, ®, is the field
flux frozen within the plasma, ®€ is the external-field flux through the annulus, ®, is the total field flux through the
annulus, and Ly and I, are the inductances corresponding to the currents I; and I,. Owing to ideal conductivity, the
field fluxes ®; and ?, are conserved, i.e.,

@y = ¢ 1L, I; = const, @, = ¢~ 1L,I, + O° = const . (1.2)

The Routh function (1.1) can be expressed solely in terms of mechanical variables, with respect to which it plays
the role of an ordinary Lagrange function. For a known function (1.1), the derivation of the equations of motion and the
stability analysis can be carried out by standard procedures.

Convenient for use are mechanical variables in the form (@), 6(¢), and a{¢), which describe the perturbation of
the annulus

r@ =06l +e(@)l, z(e=206(p), a.=2all fa(l.
where r, ¢, and z are the cylindrical coordinates of the axial curve of the filament; a and b are the inner and outer
radii of an equilibrium annulus, respectively; a. is the variable cross-sectional radius; £ and 6 are quantities
characterizing the horizontal and vertical deflections; and @ is a quantity characterizing the constrictions of the
filament.

By expanding the function €, 6, and @ into a Fourier series of the type

£ = g —[—E_I(Enccos nY - £, sin ne) , (1.3)

the functions T, U, ®/2L, and L, take the form [2]

T = Mo 2060 )+ et B [(14 )6 6,2 +
n=}

(e 4 éndn)]} , (1.4)
U= Us— poVo{eo+ 2000 + 2 <ead + 0> — Yo 1 (8o - 2000)% + Yo ("2 4+ 82} | {1.5)
®©,2] 20 = p Vo {1 + e — 200 — 2ea) +3<a2d 41/, <e? 4 8§23}, (1.6)
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Ly =2nb {I +-(I +2) e 48,2 — 205 — 2 (ead L+ <a?> +
+ ‘/221 nt (A — g, (n)) &2 + (A — g (n)) 8,21}, (1.7

=

where

&n? = €3.% 4 &%, Enbn = Enclne -+ Englns s

while 64, ok, &h, 6%, and o2 are of a similar structure; M and V, are the mass and equilibrium volume of the annulus;
po is the equilibrium gas pressure; and vy is the ratio of specific heats.

pi=B/8n, Bi=0y/na’, A=l 1-2(A-2),

n
1 1 1 1
g =2(1—g5) X g+ — o

i=1

gz(n)=2(1—7ii—2)£§————2i1_1+% :

The brackets denote averaging over the azimuth angle ¢,

2

Ty =gz { 1@)do.

0

The functions T and U are obtained under the assumption of total adiabaticity, where the gas pressure is related
with the total volume of the annulus and by the adiabatic equation. Because of the approach used in the derivation,
formulas (1.4)—(1.7) have a physical meaning only for €, §, and « disturbances that are small compared to unity but
are large compared to the a/b ratio. Moreover, the disturbances must be sufficiently smooth: the derivatives ', 6',
and a' with respect to ¢ may not exceed the order of magnitude of the functions themselves. This means that in
expansions of the (1.3) type, the higher-order harmonics have an infinitesimal weight. Consequently, the deflection
harmonics under consideration satisfy conditions of the form

ne]b<<nh, b <. (1.8)

where Ap ~ bep ~ bdp is the displacement of the filament.

Let us now determine the quantity € — @,, which depends on the structure of the magnetic field. The external
magnetic field in the proximity of the annulus represents a superposition of the main field, required to keep the
annulus in equilibrium, and an additional quadrupole field, required for its stabilization. If the lines of force of the
external field are symmetrical with respect to the plane z = o, and the main field has a value of Byy = By at the
circumference r = b, z = 0, then in the region filled out by the annulus, the magnetic field can be represented with an
accuracy to (r ~ b) terms quadratic with respect to z in the form

B,=Gz, B,=0, B,=By +G(r—b), (1.9)

where

3B,, 9B,,
G == Go '+ Gq, Go = <T>r=b ? Gq = < ar )r::b » (1'10)
7:=0

=0

while the subscripts 0 and q refer to quantities associated with the main and the quadrupole fields, respectively.

Field (1.9) is described by a vector potential with one component Ay = A,

A
B =—24  p=24.4 (1.11)

8z ar ' r

By expanding A into a Taylor series in the proximity of an equilibrium filament, and using formulas (1.9)—(1.11)
in combination with the equality dly = b(1 + g)d¢ in [2], for the external field flux througha perturbed annulus we obtain

@ = [Adl = @y + Oy -+ b2 [2Byeg -+ By (82> + bG{e> — 82
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where &, and <I>q are the fluxes of the main and quadrupole fields through the perturbed annulus. We examine the case
in which the longitudinal current in the filament is

I, = I, cosot (1.12)
and the gquadrupole field is constant, assuming that
O, = @y - Dy coswt, @, = Qg == const. (1.13)
Then, the second relation in (1.2) yields
Dy + Dy cosef 4 Dy — D, = — 2mble™t I, cos wl, (1.14)
Hence
Dy Dy — Dy =0, Dy = —2able "1 Iy . {1.15)

The first equation in (1.15) shows that the flux @y, is necessary to compensate for ‘1>q0 in the case in which the
plasma annulus forms prior to application of the field, and consequently @, = 0.

The field responsible for the flux ®y; should be selected in such a way that it vanish in the region filled out by the
perturbed annulus, for which Egs. (1.9) and (1.10) hold. Then, obviously, By = By cos wt, Gy = Gyc coswt, i.e., By
and Gy do not contain constant components. As distinct from Gy, in view of the constant quadrupole field, Gq = Gqo =
= const.

For further analysis it is convenient to introduce a mean field B' = &yo/nb?*. From the second equation in (1.15) it
follows that the magnetic-field amplitude of current I,,

B, = 21, ] ca = B, cos ot
is related to B! by the simple expression
By = —B'b ] al. (1.16)
After some simple but cumbersome transformations, we obtain

(D° — @,)2 ] 2Ly = py, Vo [l + w) (1 - cos 2et) - & (b/a)? %g X
X (62 — &2} coswt], (1.17)

where
w=(K—2)e 420 +-2¢e0>—2( +4— K) I tega +
44t Y (04— K)2 It — 1] g2 — (a2 LY, (I + K)X
X (&2 4 2 (blay? %y (82 — &2y — 1, 21 n2 [(A — g, (n)) g2+

Ti==

+ (A —g. (n) 61,?] . {1.18)

K=y —~1)1, y=25B./B py =By?*]1bx,
#y = alyc /By, %go = alg [ By .

By adding (1.5), (1.6), and (1.17) and equating to zero the time-independent coefficients of &y and &4, we arrive
at conditions for which forced oscillations of the inner and outer radii of the annulus occur about the values of
a and b,

Po =2 (K—=1)ps, p1=150E— K)psc- (1.19)
Consequently, the parameter K must satisfy the inequalities
1< K<3. (1.20)
Taking (1.19) into consideration, for the generalized potential energy of the annulus

W=U 4 ®2/2L; 4-(D°— ©,)2 ) 2L, . (1.21)
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we obtain the expression
W=Wy +pacVy {[22 — K) v (K—1) +4-1] a2+

+Yall +4— K20t — 4 -y (K- D]g? Iy (K —1) —
(1.21)

—2( 44— K) et + 2 — K) Doy + Yy (1 + K) (a2 —
=1

_i/4n§Inz (+K—g (e, + (I +K—q,(n) 8,2 42 (bla)x
X%y + 21 cos ) <82 — 2> 4w cos 2 wi},
where W, is the potential energy of the unperturbed annulus,
gr () =21Ig, () — 11, ¢ () = 21[g (n) — 1l

Formulas (1.4) and (1.21) yield the required Routh function R = T — W, which in principle permits complete
analysis of the annulus motion. The problem is complicated, however, by the fact that the individual perturbation
harmonics do not constitute normal oscillations of the system. It can be seen from (1.4), (1.18), and (1.21) that there
exists a relationship between the oscillations about the outer and inner radii (ea~relationship). At the same time, the
absence of da-relationship indicates that in the case of a straight filament, die harmonics are not related, i.e., that
they are normal oscillations of the system. Indeed, by setting

z=Dbe, z=0d p=ax

and passing to the limit (b — « and n — =) at a finite ratio n/b = k (which constitutes the perturbation wave number),
for the instantaneous kinetic energy T, and instantaneous potential energy W, we obtain expressions in which all the
harmonics are separated

Ty= —- na’s {3-702 + 2% + _;_éoz + 2 ['i‘(-ik2 + 2;2) -+ 20,2 (ka)—z]} ) (1.22)
p .
Wi = Woy +apee {122 — K) +-7(K — g2 + (2 — K) 27‘ ot —
= zk(ka)2 [2In(2/ka) — 2C 4- K — 3] (2 +24?) +-hrgo (22—a2> X (1.23)
X 008 20t - [2ap, — <p?> — s 21 (ka)? [2In (2fka) — 2C —1] (x4 +
42,2 1 cos"th}

(C = 0.577...is the Euler constant).

Here, o is the plasma density, while summation is performed over wave numbers k that satisfy, in accordance
with (1.8), the conditions

ko < kA, <1 .

Expression (1.23) lacks terms with By and C;, since for a straight filament, no external field beside the
quadrupole field is required.

Let us now analyze the stability of a straight filament, keeping in mind the following circumstances: first, that
for a straight filament, the individual perturbation harmonics are normal oscillations, so that the stability conditions
obtained are conditions sufficient for stabilization, second, that in the analysis of a straight filament, all the intrinsic
characteristics of a system with an alternating longitudinal current are retained (with the exception of the forced
oscillations of the outer radius), and third, that toroidal geometry, as shown in [2], has an appreciable effect only on
the stability conditions of harmonics with n ~ 1, where dynamic stabilization by a quadrupole field is most effective,
while for more critical (from the viewpoint of linear theory) harmonics with n > 1, the effect of a toroidal geometry
is unessential. If necessary, the stability of the annulus can be analyzed with the aid of the Routh function obtained,
along the same lines as the stability of a straight filament.

2. The equations of motion for mechanical variables have the form

P0” +2v2[2(2 — K) +9(K — 1) — cos 2¢] p, = —2av~2 cos 2, (2.1)
T = t,
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pp" Yy ka2 (2 — K) — cos 2t]l pp, = 0, 7 = of, (2.2)

X" — 1624V 2y cos2t = 0, 2t = of, (2.3)
2y" 4 16%gv 2z, cos2t = 0, 2t = ot , (2.4)
z," — 2v72 [(ka)? Ay -1 Bxrgycos2t | (ka)>(Ay 4 2—K)cos 4tlr, = 0,
2t = ot (2.5)
2y — 2v72[(ka)2 Ay — 8uyoc08 27 + (ka)? (Ay+ 2—K)cosdr]z, = 0,
2 = ot. (2.6)

Here,

v=0]Q, Q=2p,/(ca?), Ay=2n2ka)—2C +K 3,

while the prime denotes differentiation with respect to 7. Equations (2.1)—(2.6) can be reduced to the standard form of
Hill's equation [3]

u” 4~ (8, + 26, cos2t - 26, cos 4t) u = 0; (2.7

Eq. (2.1) differs from the other equations only by the presence of a right-hand side.

Let us examine first serpentine-type oscillations (2.3)—(2.6). The coefficients 8,, 8;, and 6, can be written at
once for any wave number k:

8 = —2 (ka)v2h,, O = = Bugv?,
8, = —(kayv=2 (A, +2 — K). (2.8)

For oscillations with respect to z and 6;, one should take the plus sign, and for oscillations with respect to x, the
minug sign. In the case of a displacement of the filament as a whole, k = 0, 6, = 8, = 0, and in order to obtain
stability [3], the inequality

6,] < 0.9. (2.9)

must be satisfied.

It is true that there exist stability regions also for 16| > 1; however, they do not tolerate parameter variations
within narrow limits, and are therefore of little practical interest. For disturbances at finite wavelengths (specifically
serpentine disturbances), we have 6, < 0, and provided that inequalities (2.9) and

Bf<<1 (2.10)
are satisifed, the stability condition can be written with satisfactory accuracy [3] in the form
B + 1202 (1 +1 6,)>0. (2.11)

By solving this inequality in combination with (1.20) and (2.10), and taking the concrete form of 8, and 4, into
account, it can be shown that 18,| = 1/2 even for ka < 1/4 and that, therefore, the term containing 6, in (2.11) can be
neglected. Then instead of (2.11) we have

B + 1.0, >0, (2.12)
which together with (2.9) yields

V2B 1< 8,1 < 0.9. (2.13)
By substituting 8, and Gilfrom (2.8) into (2.13), we get

v >vy =22kaV Ay, (2.14)
0.9v v < 8xg << 0.9v2. (2.15)

Proceedingfrom (2.14) and (2.15), it is possible to determine the current frequency w in the filament and the
gradient qu of the quadrupole field that are sufficient for stabilizing serpentine-type disturbances.
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Let us turn now to the analysis of radial oscillations of the filament. As distinct from a system with direct
current, in which case radial oscillations are described by equations with constant coefficients, in the case under
consideration—just as for serpentine disturbances—the corresponding equations are of the (2.7) type.

1t follows from (2.2) that for constrictions (k = 0),
G = ka2 — K), 6 = — e (ko 6= 0. (2.16)

If condition (2.14) is satisfied, it can be readily shown that 16,1 < 1. In this case, for K = 2, where 0; < 0, the
stability criterion has the form (2.12). By substituting 8y = 464(K — 2) into (2.12), we obtain for K the inequalities

0K —2< s 18] < V.

For a filament with direct current [2], the constrictions are stable for K < 2, which, by virtue of (1.19), is
equivalent to the well-known condition p; > py.

Without attaching undue importanceto a small increase in the maximum permissible value of K, let us examine
the consequences of K = 2 for a filament with an alternating current. In this case, 6, = 0 and, consequently, a
parametric excitation of the constrictions is possible. Since for condition 2.14) 16;| <« 1, in order to obtain stability
one must satisfy [3], as an example, the inequality 1 — |8;| > 8y, which with allowance for (2.16) yields

V> Yo (ka1 4 4 2 — K],

The latter inequality is satisfied as soon as condition (2.14) is fulfilled. This means that if K =< 2 (i.e., p; = py),
a filament stable with respect to serpentine disturbances is also stable with respect to constrictions.

Finally, let us examine the oscillations of the filament radius (k = 0). Equation (2.1) has the coefficients
B =222 (2 — Ky +y(K—1l, 6 =—v2 6=0, (2.17)

and a right-hand side proportional to cos27t. This means that the filament undergoes forced oscillations at a frequency
of 2w. However, an external force of this type is not a resonant force [4], and therfore stability is defined solely by the
coefficients (2.17) of a homogeneous equation.

By writing 6 in the form 6, = 202 [3 — K+ (y = 1) (K — 1)] we verify that 6, > 0 holds for any value of K within
the range (1.20), since y >1. As in the case of constrictions, a parametric build-up of oscillations can also occur in
this case. The width of parametric excitation regions, as we know [3], increases with increasing ratio 68,/16; 1. In the
case under consideration, 0,/10;1 = 2[2(2 =K) + (K — 1)l and, if 2= K >1 and y =< 2, then

Zy KO /100 <4

Hence, the instability regions will be widest for 8y = 2y [0}, where K = 2.

For this case, setting ¥ =5/3, we define the boundaries of the first three parametric excitation regions and
their relative half-widths:

V,

'max V)

min

s

Il

Vmaz T Vmin

2.08>%>153, §=045 (i region),
091 >v> 082, §=005 (2region),
0.605 >v > 0.580, § = 0.02 (3region).

Most hazardous is the first, widest instability region. However, by selecting v slightly above its critical value
as defined by criterion (2.14), we get v < 1, so that the operating point does not come to lie in the first region. The
remaining regions are relatively narrow, so that the probability of higher-order parametric resonance is small. If
need occurs, an undesirable resonance can be "tuned out™ by slightly changing a system parameter

Thus, the filament may be considered stable with respect to longwave serpentine- and constriction-type
disturbances if the conditions (2.14) and (2.15) are satisfiedand K = 2 (p; = py). In the figure (right branch), stability
regions of the filament are plotted for K = 2, which for a given value of ka lie between a parabola and the
corresponding straight line. It is obvious that the values of vand ny, required for stabilization increase as the
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wavelength of the disturbance decreases. For K < 2, the stability regions contract slightly, owing to an increase in the
slope angle of the straight lines.
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3. Let the quadrupole field now vary at the same frequency as the filament current but with a phase shift of a
quarter-period, i.e., if the current has the previous form (1.12), then

B, = By sin o, Gy = Gy, sinot

and hence
@, = Oy sinet,

The symmetry of the x and z oscillations is not disrupted at the closest phase drifts.
The flux ® should be taken in a more general form than in Eq. (1.13).
v Dy = Dy + By, cosal - Dy, sinet .
Then, instead of (1.14) we obtain
Dyo + By coswt + Dy, sin o + Dysin ot — Dy = —2xble-tl,, cosot
From here, we have

Dy — @y =0, @y, + Dy =0, By = —xbletl,,

Apparently, the flux ®4p may be absent altogether (®, = 0), while ®4 must be now compensated for by the
alternating flux (I)Os sin wt. In Egs. (1.17), (1.21), and (1.23), Gqp cos wt must be replaced by (1/2)Gqs sin 2wt,

As in the case of a constant quadrupole field, the radial oscillations of a straight filament are described by Egs.
(2.1) and (2.2), while the equations for serpentine-type oscillations take the form

Zy" — 2mgv %, sin 2t = 0, (3.1)

z" b 240 22 sin 2t = 0, (3.2)

zy" — v 2[(ka)2Ay 4 dxgs sin 2t + (ka)? (A, +2— K)cos2tlz, = 0, (3.3)
25" — Yyv 2 (ka)? Ay — duy, sin2v 4 (ke)? (A, + 2 — K) cos Zxlz, = 0, {3.4)

where

T =0l % = alGg [ B

By an appropriate shift with respect to 7, Egs. (3.1)-(3.4) reduce to the standard form (2.7). Their stability,
therefore, can be analyzed along the same lines as in section 2 for a constant quadrupole field. Omitting the
particulars, we write the filament stabilization conditions as follows:

K<2,v >v,=11ka VA, 09vy <y < 0.9v2, (3.5)

With respect to oscillations of the filament radius, conditions (3.5) hold with the same reservations as in section
2. The figure (left branch) shows the stability regions ohtained on the basis of inequalities (3.5) for K = 2,
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4, For comparison, we give the results of [2], which can be readily written for a straight filament: if
K <2, vy =22k VA, 0.9y < fy, < 0.9v2

(g = aGye [ By, By = comst, Gy = Gy, cos o) ,

(4.1)

then the filament is stable with respect to longwave serpentine- and constriction-type disturbances. In the figure
(central branch, dashed curves), the stability regions of the filament are plotted on the basis of inequalities (4.1) for
the limiting case K = 2,

From (2.14), (2.15), (3.5), and (4.1), one can obtain the relations

Gge = 26g0 = Gpsy 0y = 0y = 20

for the lower bounds of the operating frequencies and quadrupolefield gradients. Here, the subscripts ¢ and s refer

to quantities associated with direct [2] and alternating (section 3) currents in an alternating quadrupole field, and the
subscript 0 refers to the direct current in a constant quadrupole field (section 2). It can be seen that in comparison with
the stabilizating method [2], in the case of an alternating current in the filament, one can halve the gradient of the
stabilizing field when this field is constant, or halve the operating frequency when both the field and current are
alternating. The first two versions, where either the current or the quadrupole field is constant, are, however, more
attractive from the practical point of view.

The author is indebted to M. L. Levin for useful discussions and advice.
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